Fast non-polynomial interpolation and integration for functions with logarithmic singularities
نویسندگان
چکیده
منابع مشابه
On Polynomial Interpolation to Analytic Functions with Singularities
Méray has given f the following illustration to show that polynomials formed from a given function by interpolation do not necessarily converge to that function. Interpolate to the f unction ƒ (s) = 1/z by means of the polynomials pn(z) of respective degreest w = l, 2, 3, • • • , required to coincide with ƒ (z) in the (n + l)th roots of unity; this condition defines the polynomials pn(z) unique...
متن کاملPlurisubharmonic functions with logarithmic singularities
© Annales de l’institut Fourier, 1988, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier...
متن کاملPolynomial Approximations of Functions with Endpoint Singularities and Product Integration Formulas
Several problems of mathematical physics lead to Fredholm integral equations of the second kind where the kernels are either weakly or strongly singular and the known terms are smooth. These equations have solutions which are smooth in the whole interval of integration except at the endpoints where they have mild singularities. In this paper we derive new pointwise and uniform polynomial approx...
متن کاملNumerical indefinite integration of functions with singularities
We derive an indefinite quadrature formula, based on a theorem of Ganelius, for Hp functions, for p > 1, over the interval (−1, 1). The main factor in the error of our indefinite quadrature formula is O(e−π √ ), with 2N nodes and 1 p + 1 q = 1. The convergence rate of our formula is better than that of the Stenger-type formulas by a factor of √ 2 in the constant of the exponential. We conjectur...
متن کاملNumerical Integration for Multivariable Functions with Point Singularities
We consider the numerical integration of functions with point singularities over a planar wedge S using isoparametric piecewise polynomial interpolation of the function and the wedge. Such integrals often occur in solving boundary integral equations using the collocation method. In order to obtain the same order of convergence as is true with uniform meshes for smooth functions, we introduce an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2018
ISSN: 0377-0427
DOI: 10.1016/j.cam.2018.04.034